Safety Data Sheet

Date of revision: January 2020
Supersedes: December 2015

Section 1
Identification of the chemical and of the supplier

<table>
<thead>
<tr>
<th>1.1 Product Identifier</th>
<th>Optibor HP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2 Other means of identification</td>
<td>Boric Acid</td>
</tr>
<tr>
<td>1.3 Recommended use of the chemical and restrictions on use</td>
<td>Industrial manufacturing</td>
</tr>
</tbody>
</table>
| 1.4 Supplier's details (including name, address, phone number, email) | Rio Tinto Minerals Asia Pte Ltd
12 Marina Boulevard
#20-01 Marina Bay Financial Centre
Tower 3
Singapore 018982
+65 6679 9316
rtb.sds@riotinto.com

Borax Europe Limited
6 St. James's Square
London, SW1Y 4AD United Kingdom
+44 (0)20 7781 2000 |

Manufacturer
Borax Français S.A.S.
Usine/Siège Social
Route de Bourbourg
CS 70059
59411 Coudekerque-Branche Cedex, France
+ (33) 3 28 29 28 30 |

| 1.5 Emergency phone number | APAC +65 3158 1074 (24-Hr Non toll-free number) (Rio Tinto Borates)
EIMEA +44 (0) 1235 239 670 (Rio Tinto Borates) |

Section 2
Hazards identification

<table>
<thead>
<tr>
<th>2.1 Classification of the substance or mixture</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Classification (CLP Regulation (EC) No 1272/2008):</td>
<td>Classified as toxic for reproduction (Repr. 1B; H360FD). The products listed above are produced in Europe and classification complies with the EU CLP. U.S. Borax Optibor products produced in the USA have been GHS self-classified as Cat 2 in the Americas and Asia-Pacific regions.</td>
</tr>
</tbody>
</table>
| Reproductive Toxicity Category 1B
Acute Toxicity (Oral) Category 5 |

| 2.2 GHS label elements, including pictogram or symbol, signal word, hazard and precautionary statements
Hazard pictograms | |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal word: Danger</td>
</tr>
</tbody>
</table>
| **Hazard statements:**
H360: May damage fertility or the unborn child.
H303: May be harmful if swallowed. |
Precautionary statements:
P202: Do not handle until all safety precautions have been read and understood.
P281: Use personal protective equipment as required.
P308+P313: IF exposed or concerned: Get medical advice/attention.
P501: Dispose of contents/container in accordance with local regulation.

Other hazards which do not result in classification (e.g. dust explosion hazard): None

Section 3 Composition/information on ingredients

3.1 Substances

<table>
<thead>
<tr>
<th>Chemical name</th>
<th>Common names and synonyms</th>
<th>CAS No.</th>
<th>% content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boric acid</td>
<td>Orthoboric acid, Boracic acid</td>
<td>10043-35-3</td>
<td>>99.9</td>
</tr>
</tbody>
</table>

Section 4 First aid measures

4.1 Description of first aid measures

Protection of first-aiders: No special protective clothing is required.

Inhalation: If symptoms such as nose or throat irritation are observed, remove to fresh air.

Eye contact: Use eye wash fountain or fresh water to cleanse eye. If irritation persists for more than 30 minutes, seek medical attention.

Skin contact: No treatment necessary.

Ingestion: Swallowing small quantities (one teaspoon) will cause no harm to healthy adults. If larger amounts are swallowed, give two glasses of water to drink and seek medical attention.

4.2 Most important symptoms and effects both acute and delayed:

Symptoms of accidental over-exposure to high doses of inorganic borate salts have been associated with ingestion or absorption through large areas of severely damaged skin. These may include nausea, vomiting, and diarrhoea, with delayed effects of skin redness and peeling (see Section 11).

4.3 Indication of any immediate medical attention and special treatment needed:

Note to physicians: Supportive care only is required for adult ingestion of less than a few grams of the product. For ingestion of larger amounts, maintain fluid and electrolyte balance and maintain adequate kidney function. Gastric lavage is only recommended for heavily exposed, symptomatic patients in whom emesis has not emptied the stomach. Hemodialysis should be reserved for patients with massive acute absorption, especially for patients with compromised renal function. Boron analyses of urine or blood are only useful for verifying exposure and are not useful for evaluating severity of poisoning or as a guide in treatment.

Section 5 Fire-fighting measures

5.1 Suitable (and unsuitable) extinguishing media

Suitable extinguishing media: Use extinguishing media that are appropriate to local circumstances and the surrounding environment.

Unsuitable extinguishing media: None

5.2 Special hazards arising from the chemical

None. The product is not flammable, combustible or explosive.

5.3 Special protective equipment and precautions for fire-fighters:

Not applicable. The product is itself a flame retardant.

Section 6 Accidental release measures

6.1 Personal precautions, protective equipment and emergency procedures

For non-emergency personnel:

Eye goggles and gloves are not required for normal industrial exposures, but eye protection according to ANSI Z.87.1 or other national standard. Respirators should be considered if environment is excessively dusty.
For emergency responders:
Eye goggles and gloves are not required for normal industrial exposures, but eye protection according to ANSI Z.87.1 or other national standard. Respirators should be considered if environment is excessively dusty.

6.2 Environmental precautions: The product is a water-soluble white powder that may cause damage to trees or vegetation by root absorption. Avoid contamination of water bodies during clean up and disposal. Advise local water authority that none of the affected water should be used for irrigation or for the abstraction of potable water until natural dilution returns the boron value to its normal environmental background level or meets local water quality standards.

6.3 Methods and material for containment and cleaning up
Appropriate containment: Avoid spillage into water and cover drains.
Land spill: Vacuum, shovel or sweep up and place in containers for disposal in accordance with applicable local regulations.
Spillage into water: Where possible, remove any intact containers from the water.

6.4 Reference to other sections
Refer to sections 8, 12 and 13.

Section 7 Handling and storage

7.1 Precautions for safe handling
Good housekeeping procedures should be followed to minimise dust generation and accumulation. Avoid spills. Do not eat, drink and smoke in work areas. Wash hands after use. Remove contaminated clothing and protective equipment before entering eating areas.

7.2 Conditions for safe storage, including any incompatibilities
No special handling precautions are required, but dry, indoor storage is recommended. To maintain package integrity and to minimise caking of the product, bags should be handled on a first-in first-out basis.

Storage temperature: Ambient
Storage pressure: Atmospheric
Special sensitivity: Moisture (Caking)

Section 8 Exposure controls/personal protection

8.1 Control parameters
Occupational exposure limit values: In the absence of a national OEL, Rio Tinto Borates recommends and applies internally an Occupational Exposure Limit (OEL) of 1 mg B/m3. To convert product into equivalent boron (B) content, multiply by 0.175.

8.2 Appropriate engineering controls: Use local exhaust ventilation to keep airborne concentrations of dust below permissible exposure limits.

8.3 Personal protection equipment:
Eye and face protection: Eye protection according to ANSI Z.87.1 or other national standards may be warranted if environment is excessively dusty.
Skin protection: Standard work gloves (cotton, canvas or leather) may be warranted if environment is excessively dusty.
Respiratory protection: Where airborne concentrations are expected to exceed exposure limits, respirators should be used (EN149).

Section 9 Physical and chemical properties

9.1 Information on basic physical and chemical properties
Appearance: White, crystalline solid
Odour: Odourless
Odour threshold: Not applicable: odourless
pH @ 20°C: 6.1 (0.1% solution); 5.1 (1.0% solution); 3.7 (4.7% solution)
Melting point/Freezing point: >1000°C
Initial boiling point and boiling range: Not applicable: melting point >300°C
Flash point: Not applicable: inorganic substance
Evaporation rate: Not applicable: non-volatile
Flammability (solid/gas): Non-flammable (used as a flame retardant)
Upper/lower flammability or explosive limits: Not applicable: non-flammable
Vapour pressure: Not applicable: melting point >300°C
Vapour density: Not applicable: melting point >300°C
Relative density: 1.49 @ 23°C
Solubility(ies): Water: 49.2 g/L @ 20°C
Partition coefficient; n-octanol/water: Log P_{ow} = -1.09 @ 22°C
Auto-ignition temperature: Not applicable: not self-heating
Decomposition temperature: If heated above 100°C water is lost and boric acid converts initially to metaboric acid (HBO₂) and on further heating forms boric oxide (B₂O₃)
Viscosity: Not applicable: not self-heating
Explosive properties: Not applicable: solid substance
Oxidising properties: Not explosive: does not contain chemical groups associated with explosive properties
Not oxidising: does not contain chemical groups associated with oxidising properties

9.2 Other information
Molecular weight: 61.8
Formula: H₃BO₃

Section 10 Stability and reactivity

10.1 Reactivity: None known.

10.2 Chemical stability: Under normal ambient temperatures (-40 °C to +40°C), the product is stable product. When heated it loses water, first forming metaboric acid (HBO₂), and on further heating it is converted into boric oxide (B₂O₃).

10.3 Possibility of hazardous reactions: Boric acid is a weak acid that may cause corrosion of base metals. Reaction with strong reducing agents such as metal hydrides or alkali metals will generate hydrogen gas which could create an explosive hazard.

10.4 Conditions to avoid: Avoid contact with strong reducing agents by storing according to good industrial practice.

10.5 Incompatible materials: Strong reducing agents.

10.6 Hazardous decomposition products: None.

Section 11 Toxicological Information

11.1 Information on the likely routes of exposure (inhalation, ingestion, skin and eye contact)
Inhalation is the most significant route of exposure in occupational and other settings. Dermal exposure is not usually a concern because product is poorly absorbed through intact skin. Product is not intended for ingestion.

(a) Acute toxicity
Method: Acute Oral Toxicity Study – OECD Guideline 401
Species: Rat
Dose: 2000 – 5000 mg/kg body weight
Routes of Exposure: Oral
Results: Low acute oral toxicity. The oral LD₅₀ value in male rats is 3,450 mg/kg bw, and in female rats is 4080 mg/kg bw.
Classification: Acute Toxicity (Oral) Category 5 (Hazard statement: H303: May be harmful if swallowed)

Method: Acute Dermal Toxicity Study – U.S. EPA FIFRA Guidelines
Species: Rabbit
Dose: 2,000 mg/kg bw
Routes of Exposure: Dermal
Results: Low acute dermal toxicity; LD₅₀ in rabbits is > 2,000 mg/kg of body weight. Poorly absorbed through intact skin.
Based on the available data, the classification criteria are not met.

Method: Acute Inhalation Toxicity Study – OECD Guideline 403
Species: Rat
Dose: 2.12 mg/L
Routes of Exposure: Inhalation
Results: Low acute inhalation toxicity; LC₅₀ in rats is > 2.0 mg/l (or g/m³). Based on the available data, the classification criteria are not met.

(b) Skin corrosion / irritation:
Method: Primary Dermal Irritation Study – U.S. EPA FIFRA Guidelines
Species: New Zealand White Rabbit
Dose: 0.5 g moistened with saline
Routes of Exposure: Dermal
Results: No skin irritation. Mean Primary Irritation Score: 0.1. Based on the available data, the classification criteria are not met.
(c) Serious eye damage / irritation:
Method: Eye Irritation Study – similar to OECD Guideline 405
Species: New Zealand White Rabbit
Dose: 0.1 g
Routes of Exposure: Eye
Results: Not irritating, corneal involvement or irritation clearing in 7 days.
Classification: Based on mean scores < 1, and the effects were fully reversible within 7 days, the classification criteria are not met. Many years of occupational exposure indicate no adverse effects on human eye.

(d) Respiratory or skin sensitization:
Method: Buehler Test – OECD Guideline 406
Species: Guinea Pig
Dose: 0.4 g 95 % w/w/boric acid
Routes of Exposure: Dermal
Results: Not a skin sensitizer. No respiratory sensitisation studies have been conducted. There are no data to suggest that boric acid is a respiratory sensitizer. Based on the available data, the classification criteria are not met.

(e) Germ cell mutagenicity:
Method: Several in vitro mutagenicity studies have been carried out on boric acid including gene mutation in mammalian cells, unscheduled DNA synthesis, chromosomal aberration and sister chromatid exchange in mammalian cells.
Species: L5178Y mouse lymphoma, V79 Chinese hamster cells, C3H/10T1/2 cells, hepatocytes, Chinese hamster ovary (CHO cells).
Dose: 1.0 - 10.0 mg/ml (1000 -10000 ppm) boric acid
Routes of Exposure: in vitro
Results: Not mutagenic (based on boric acid). Based on the available data, the classification criteria are not met.

(f) Carcinogenicity:
Method: OECD 451 equivalent.
Species: B6C3F1 mice
Dose: 446 ; 1150 mg boric acid/kg bw/day
Routes of Exposure: Oral feeding study
Results: No evidence of carcinogenicity. Based on the available data, the classification criteria are not met.

(g) Reproductive toxicity:
Method: Three-generation feeding study, similar to OECD 416 Two-Generation Study
Species: Rat
Dose: 0; 34 (5.9); 100 (17.5) and 336 (58.5) mg boric acid (mg B)/kg bw/day
Routes of Exposure: Oral feeding study
Results: NOAEL in rats for effects on fertility in males is 100 mg boric acid/kg bw equivalent to 17.5 mg B/kg bw.

Method: Prenatal Developmental Toxicity Study of Boric Acid – OECD Guideline 414
Species: Rat
Dose: 0; 19 (3.3); 36 (6.3); 55 (9.6); 76 (13.3) and 143 (25) mg boric acid (mg B)/kg bw.
Routes of Exposure: Oral feeding study
Results: NOAEL in rats for developmental effects on the foetus including foetal weight loss and minor skeletal variations is 55 mg boric acid/kg bw or 9.6 mg B/kg.
Classification: Reproductive Toxicity Category1B (Hazard statement: H360: May damage fertility or the unborn child.)

Method: Occupational studies of evaluating sensitive sperm parameters in highly exposed borate workers. Epidemiological studies evaluating high environmental exposures to boron and developmental effects in humans have been conducted.
Species: Human
Dose: A subset of workers was exposed to 125 mg B/day.
Routes of Exposure: Combined oral ingestion and inhalation
Results: No adverse fertility effects in male workers. Epidemiological studies of human developmental effects have shown an absence of effects in exposed borate workers and populations living in areas with high environmental levels of boron.

(h) STOT-single exposure:
Species: Mouse
Dose: 221 - 1096 mg boric acid/m3
Routes of Exposure: Inhalation
Results: The highest concentration of boric acid that was achievable with acceptable control of the aerosol concentration was 1096 mg/m3 with a %RD of 19%. The lowest exposure tested of 221 mg/m3 boric acid resulted in a reduced respiration rate of 9%, graded as no irritation. Based on the available data, the classification criteria are not met.

Method: Sensory irritation in human volunteers
Species: Human
Dose: 2.5, 5, 10 mg boric acid/m3
Routes of Exposure: Inhalation
Results: No irritation from boric acid was observed at exposures up to 10 mg/m3 among male and female human volunteers under controlled laboratory conditions.
(i) STOT-repeated exposure:
Method: Chronic toxicity study of boric acid, similar to OECD 452
Species: Rat
Dose: 0; 33 (5.9); 100 (17.5); 334 (58.5) mg boric acid (B)/kg bw per day (nominal in diet)
Routes of Exposure: oral: feed
Results: A NOAEL of 17.5 mg B/kg bw/day equivalent to 100 mg boric acid/kg bw/day was determined in a chronic feeding study (2 years) in rats and is based on testes effects. Other effects (kidney, haemopoietic system) are regarded only at even higher dose levels. Based on the available data, the classification criteria are not met.

(j) Aspiration hazard: Physical form of solid powder indicates no aspiration hazard potential.

Toxicokinetics
In the blood boric acid is the main species present and is not further metabolised. Boric acid is distributed rapidly and evenly through the body, with concentrations in bone 2 - 3 higher than in other tissues. Boric acid is excreted rapidly, with elimination half-lives of 1 h in the mouse, 3 h in the rat and < 27.8 h in humans, and has low potential for accumulation. Boric acid is mainly excreted in the urine. Absorption of borates via the oral route is nearly 100 %. For the inhalation route also 100 % absorption is assumed as worst case scenario. Dermal absorption through intact skin is very low with a percent dose absorbed < 0.5%.

11.2 Symptoms related to the physical, and chemical and toxicological characteristics:
Products are not intended for ingestion. Small amounts (e.g. a teaspoonful) swallowed accidentally are not likely to cause effects. Symptoms of accidental over-exposure to high doses of inorganic borate salts have been associated with ingestion or absorption through large areas of severely damaged skin. These may include nausea, vomiting, and diarrhoea, with delayed effects of skin redness and peeling.

11.3 Delayed and immediate effects as well as chronic effects from short and long-term exposure:
Human epidemiological studies show no increase in pulmonary disease in occupational populations with chronic exposures to boric acid and sodium borate dust. Human epidemiological studies indicate no effect on fertility in occupational populations with chronic exposures to borate dust and indicate no effect to a general population with high exposures to borates in the environment.

11.4 Numerical measures of toxicity (such as acute toxicity)
None. This product is a substance.

Section 12 Ecological information

12.1 Ecotoxicity (aquatic and terrestrial, where available)
Note that the data values are expressed as boron equivalents. To convert to this product divide the boron equivalent by 0.175. Studies judged to be unreliable or with insufficient information to evaluate are not included. All toxicity values are reported as added concentrations, i.e. with subtraction of the background concentration of Boron in the test media.

Freshwater

<table>
<thead>
<tr>
<th>Taxonomic Group</th>
<th>Number of Taxa Tested</th>
<th>Range of Endpoint Values (geometric NOEC/EC10)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algal</td>
<td>1</td>
<td>17.5 mg B/L (Pseudokirchneriella subcapitata)</td>
<td>2</td>
</tr>
<tr>
<td>Higher plants</td>
<td>1</td>
<td>6.0 mg B/L (Spirodella polyrhiza)</td>
<td>3</td>
</tr>
<tr>
<td>Invertebrate</td>
<td>5</td>
<td>6.3 mg B/L (Hyalella azteca) to 30.0 mg B/L (Lampsilis silliquoidea)</td>
<td>4, 5</td>
</tr>
<tr>
<td>Fish</td>
<td>6</td>
<td>6.3 mg B/L (Brachydano rero) to 36.8 mg B/L (Micropterus salmoides)</td>
<td>6, 7</td>
</tr>
<tr>
<td>Amphibian</td>
<td>4</td>
<td>9.4 mg B/L (Xenopus laevis) to 69.9 mg B/L (Bufo fowleri)</td>
<td>8, 9</td>
</tr>
</tbody>
</table>

Results: Based on the complete data set of 17 species, the HC5-50 value of the species sensitivity distribution is 5.7 mg B/L.

Acute studies

<table>
<thead>
<tr>
<th>Taxonomic Group</th>
<th>Number of Taxa Tested</th>
<th>Range of Endpoint Values (geometric EC/LC50)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algal</td>
<td>1</td>
<td>52.4 mg B/L (Pseudokirchneriella subcapitata)</td>
<td>2</td>
</tr>
<tr>
<td>Invertebrate</td>
<td>7</td>
<td>112.9 mg B/L (Ceridaphnia dubia) to >544 mg B/L (Megalonaias nervosa)</td>
<td>4</td>
</tr>
<tr>
<td>Fish</td>
<td>1</td>
<td>79.7 mg B/L (Pimephales promelas)</td>
<td>4</td>
</tr>
</tbody>
</table>

Classification: Based on the acute data for freshwater species, this substance is not classified as hazardous to the environment.
Marine and Estuarine Data

Chronic studies

<table>
<thead>
<tr>
<th>Taxonomic Group</th>
<th>Number of Taxa Tested</th>
<th>Range of Endpoint Values (geometric NOEC/EC10)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algal</td>
<td>1</td>
<td>27.9 mg B/L (Phaeodactylum tricornutum)</td>
<td>10</td>
</tr>
<tr>
<td>Invertebrate</td>
<td>1</td>
<td>16.6 mg B/L (Americamysis bahia)</td>
<td>11</td>
</tr>
</tbody>
</table>

Results: No data are available for vetebrate species. The results from the freshwater data set are recommended as applicable to marine and estuarine species.

Acute studies

<table>
<thead>
<tr>
<th>Taxonomic Group</th>
<th>Number of Taxa Tested</th>
<th>Range of Endpoint Values (geometric EC/LC50)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alga</td>
<td>1</td>
<td>66.0 mg B/L (Phaeodactylum tricornutum)</td>
<td>10</td>
</tr>
<tr>
<td>Invertebrate</td>
<td>1</td>
<td>130 mg B/L (Litopenaeus vannamei)</td>
<td>12</td>
</tr>
<tr>
<td>Fish</td>
<td>1</td>
<td>74 mg B/L (Limanda limanda) (total)</td>
<td>13</td>
</tr>
</tbody>
</table>

Sediment

<table>
<thead>
<tr>
<th>Taxonomic Group</th>
<th>Number of Taxa Tested</th>
<th>Range of Endpoint Values (geometric EC/LC50)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Invertebrate</td>
<td>1</td>
<td>37.7 mg B/kg sediment dw (Chironomus riparius)</td>
<td>14</td>
</tr>
</tbody>
</table>

Results: The weight of evidence provided by the lack of partitioning of boron to the sediment and the results of the water only/whole sediment toxicity tests indicate that it is unlikely that boron will exert toxic effects via the sediment compartment and that the derivation of a sediment HC5-50 value is not warranted for this product.

Sewage Treatment Plants (STP)

<table>
<thead>
<tr>
<th>Taxonomic Group</th>
<th>Number of Taxa Tested</th>
<th>Range of Endpoint Values (geometric NOEC/EC10)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activated sludge</td>
<td>NA</td>
<td>17.5 mg B/L to 10,000 mg B/L</td>
<td>15, 16</td>
</tr>
<tr>
<td>Microbes</td>
<td>3</td>
<td>10 mg B/L (Opercularia bimarginata) to 20 mg B/L</td>
<td>17</td>
</tr>
</tbody>
</table>

Results: The lowest NOEC for sewage treatment plant is 10 mg B/L.

Terrestrial Data

Chronic studies

<table>
<thead>
<tr>
<th>Taxonomic Group</th>
<th>Number of Taxa Tested</th>
<th>Range of Endpoint Values (geometric NOEC/EC10)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant</td>
<td>28</td>
<td>7.2 mg B/kg dw (Zea mays) to 56 mg B/kg dw (Allium cepa)</td>
<td>18, 19</td>
</tr>
<tr>
<td>Invertebrates</td>
<td>9</td>
<td>15.4 mg B/kg dw (Folsomia candida) to 86.7 mg B/kg dw (Caenorhabditis elegans)</td>
<td>20, 21</td>
</tr>
<tr>
<td>Soil micro</td>
<td>3</td>
<td>41.3 mg B/kg dw (substrate induced nitrification) to 48.1 mg B/kg dw (soil nitrogen transformation test)</td>
<td>22, 23, 24</td>
</tr>
</tbody>
</table>

Results: Based on the complete data set, the HC5-50 value of the species sensitivity distribution is 11.3 mg B/kg dw.

Phytotoxicity: Boron is an essential micronutrient for healthy growth of plants. It can be harmful to boron sensitive plants in higher quantities. Care should be taken to minimise the amount of borate product released to the environment.

12.2 Persistence and Degradability

Biodegradation is not an applicable endpoint since the product is an inorganic substance.

12.3 Bioaccumulative potential

This product will undergo hydrolysis in water to form undissociated boric acid. Boric acid will not biomagnify through the foodchain. Octanol/Water partition coefficient: $\log P_{ow} = -0.7570 \ @ 25^\circ C$ (based on boric acid).

12.4 Mobility in soil

The product is soluble in water and is leachable through normal soil. Adsorption to soils or sediments is insignificant.
Section 13 Disposal considerations

13.1 Disposal methods
Product packaging should be recycled where possible.
Local authorities should be consulted about any specific local requirements
Such product should, if possible, be used for an appropriate application.

Section 14 Transport information

Transport Classification for Road (ADR) / Rail (RID); Inland waterways (ADN); Sea (IMDG); Air (ICAO/IATA)
14.1 UN Number: Not Regulated
14.2 UN Proper Shipping Name: Not Regulated
14.3 Transport hazard class(es): Not Regulated
14.4 Packing Group: Not Regulated
14.5 Environmental Hazards (e.g. marine pollutant): Not Regulated
14.6 Special precautions for user: Not Regulated
14.7 Transport in bulk according to Annex II of MARPOL 73/78 and the IBC code: Not Regulated

Section 15 Regulatory information

15.1 Safety, health and environmental regulations/legislation specific for the substance or mixture

International regulations

Clean Air Act (Montreal Protocol) - Substances that deplete the ozone layer: Not manufactured with and does not contain any Class I or Class II ozone depleting substances.

Stockholm Convention on Persistent Organic Pollutants: Not listed

Rotterdam Convention on Prior Informed Consent (PIC): Not listed

UNECE Aarhus Protocol on POPs and Heavy Metals: Not listed

National Regulations: Ensure all national/local regulations are observed.

Chemical inventory listing: The listing is sometimes under the Inventory number of the anhydrous form of this inorganic salt.

United States (TSCA) Active: 10043-35-3
Canada (DSL): 10043-35-3
European Union (EINECS): 233-139-2
Australia (AICS): 10043-35-3
China (IECSC): 10043-35-3
Japan (METI & ISHL): (1)-63
New Zealand (NZIoC): 10043-35-3
Philippines (PICCS): 10043-35-3
South Korea (KECI): KE-03499
Taiwan (NECI): Listed
Thailand (TECI): 10043-35-3
Vietnam: Listed
Section 16 Other information

16.1 Date of previous issue: December 2015

16.2 Date of latest revision date: January 2020

Revision Details:
Section 1: Updated manufacturer and suppliers' contact number.
Section 11, 15 and 16: Additional information.
Minor typographical corrections

16.3 References:

16.4 Abbreviations and acronyms:
- bw: Body weight
- dw: Dry weight
- EC: Effect concentration
- GHS: Global Harmonised System for classification and labelling of chemicals
- HC: Hazard Concentration
- IATA: International Air Transport Association
- IBC: Intermediate Bulk Container
- IMDG: International Maritime Dangerous Goods
- LC: Lethal Concentration
- LD: Lethal Dose
- STOT: Specific Target Organ Toxicity
- LOEC: Lowest Observed Effect Concentration
- NA: Not applicable.
- NOAEL: No observed adverse effect level
- NOEC: No Observed Effect Concentration
- STP: Sewage Treatment Plant

Precautionary Phrases:
Do not ingest.
Keep out of reach of children.
Refer to safety data sheet.
Not for use in food, drugs or pesticides.
Disclaimer:
Rio Tinto Minerals Asia Pte. Ltd. provides the information contained herein in good faith but makes no representation as to its comprehensiveness or accuracy. This document is intended only as a guide to the appropriate precautionary handling of the material by a properly trained person using this product. Individuals receiving the information must exercise their independent judgement in determining its appropriateness for a particular purpose.
RIO TINTO MINERALS ASIA PTE. LTD. MAKES NO REPRESENTATIONS OR WARRANTIES, EITHER EXPRESSED OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE INFORMATION SET FORTH HEREIN OR THE PRODUCT TO WHICH THE INFORMATION REFERS. ACCORDINGLY RIO TINTO MINERALS ASIA PTE. LTD. WILL NOT BE RESPONSIBLE FOR DAMAGES RESULTING FROM USE OR RELIANCE UPON THIS INFORMATION.