Section 1. Identification

Product name : Firebreak® ZB
Chemical name : Hexaboron dizinc undecaoxide, hydrate
Other means of identification : Zinc Borate 2335
Product type : Solid.

Recommended use of the chemical and restrictions on use
Material uses : Refer to the table "Identified uses" below.

Identified uses
Anticorrosive adhesion promoter
Anti-tracking (prevention of electrical breakdown over the surface of polymer insulators)
Corrosion inhibitors and anti-scaling agents
Flame retardants

Supplier's details :
Borax Europe Limited
6 St. James’s Square
London, SW1Y 4AD
United Kingdom

+44 (0)20 7781 2000

E-mail address of person responsible for this SDS : rtb.sds@riotinto.com

Emergency telephone number :
Rio Tinto Borates
Americas: +1 215 207 0061
Asia Pacific: +65 3158 1074
China: +86 512 8090 3042
General: +44 (0) 1235 239 670
For advice on chemical emergencies, spillages, fires or first aid.

Section 2. Hazard identification

Classification of the substance or mixture :
TOXIC TO REPRODUCTION (Unborn child) - Category 2
AQUATIC HAZARD (ACUTE) - Category 1
AQUATIC HAZARD (LONG-TERM) - Category 2

GHS label elements
Hazard pictograms :

Signal word : Warning
Hazard statements :
Suspected of damaging the unborn child.
Very toxic to aquatic life.
Toxic to aquatic life with long lasting effects.

Date of issue/Date of revision : 2019/05/14
Version : 1
Section 2. Hazard identification

General: Do not handle until all safety precautions have been read and understood.

Prevention: Avoid release to the environment.

Response: IF exposed or concerned: Get medical attention.

Storage: Not applicable.

Disposal: Dispose of contents and container in accordance with all local, regional, national and international regulations.

Other hazards which do not result in classification: None known.

Section 3. Composition/information on ingredients

Substance/mixture: Substance

Chemical name: Hexaboron dizinc undecaoxide, hydrate

CAS number/other identifiers

<table>
<thead>
<tr>
<th>Chemical name</th>
<th>CAS number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hexaboron dizinc undecaoxide, hydrate</td>
<td>138265-88-0</td>
</tr>
</tbody>
</table>

Occupational exposure limits, if available, are listed in Section 8.

Section 4. First aid measures

Description of necessary first aid measures

Eye contact: Use eye wash fountain or fresh water to cleanse the eye. If irritation persists for more than 30 minutes, seek medical attention.

Inhalation: If symptoms such as nose or throat irritation are observed, remove to fresh air.

Skin contact: No treatment necessary.

Ingestion: Swallowing small quantities (one teaspoon) will cause no harm to healthy adults. If larger amounts are swallowed, give two glasses of water to drink and seek medical attention.

Most important symptoms/effects, acute and delayed

Potential acute health effects

Eye contact: No known significant effects or critical hazards.

Inhalation: No known significant effects or critical hazards.

Skin contact: Symptoms of accidental over-exposure to high doses of inorganic borate salts have been associated with ingestion or absorption through large areas of severely damaged skin. These may include nausea, vomiting, and diarrhoea, with delayed effects of skin redness and peeling.

Ingestion: This product is not intended for ingestion. Small amounts (e.g., a teaspoon) swallowed accidentally are not likely to cause effects; swallowing amounts larger than that may cause gastrointestinal symptoms. Symptoms of accidental over-exposure to high doses of inorganic borate salts have been associated with ingestion or absorption through large areas of severely damaged skin. These may include nausea, vomiting, and diarrhoea, with delayed effects of skin redness and peeling.

Over-exposure signs/symptoms

Eye contact: No specific data.
Section 4. First aid measures

Inhalation : Adverse symptoms may include the following:
- reduced fetal weight
- increase in fetal deaths
- skeletal malformations

Skin contact : Symptoms of accidental over-exposure to high doses of inorganic borate salts have been associated with ingestion or absorption through large areas of severely damaged skin. These may include nausea, vomiting, and diarrhoea, with delayed effects of skin redness and peeling.

Ingestion : Symptoms of accidental over-exposure to high doses of inorganic borate salts have been associated with ingestion or absorption through large areas of severely damaged skin. These may include nausea, vomiting, and diarrhoea, with delayed effects of skin redness and peeling.

Indication of immediate medical attention and special treatment needed, if necessary

Notes to physician : Supportive care only is required for adult ingestion of less than a few grams of the product. For ingestion of larger amounts, maintain fluid and electrolyte balance and maintain adequate kidney function. Gastric lavage is only recommended for heavily exposed, symptomatic patients in whom emesis has not emptied the stomach. Hemodialysis should be reserved for patients with massive acute absorption, especially for patients with compromised renal function. Boron analyses of urine or blood are only useful for verifying exposure and are not useful for evaluating severity of poisoning or as a guide in treatment.

Specific treatments : No specific treatment.
Protection of first-aiders : No special protective clothing is required

See toxicological information (Section 11)

Section 5. Fire-fighting measures

Extinguishing media

Suitable extinguishing media : Use an extinguishing agent suitable for the surrounding fire.

Unsuitable extinguishing media : None known.

Specific hazards arising from the chemical : None. The product is not flammable, combustible or explosive.

Hazardous thermal decomposition products : None.

Special protective actions for fire-fighters : None.

Special protective equipment for fire-fighters : Not applicable.

Remark : Not explosive.

Section 6. Accidental release measures

Personal precautions, protective equipment and emergency procedures

For non-emergency personnel : No action shall be taken involving any personal risk or without suitable training. Evacuate surrounding areas. Keep unnecessary and unprotected personnel from entering. Do not touch or walk through spilled material. Provide adequate ventilation. Wear appropriate respirator when ventilation is inadequate. Put on appropriate personal protective equipment.

For emergency responders : If specialized clothing is required to deal with the spillage, take note of any information in Section 8 on suitable and unsuitable materials. See also the information in "For non-emergency personnel".
Section 6. Accidental release measures

Environmental precautions: The product is a water-soluble white powder that may cause damage to trees or vegetation by root absorption. Avoid contamination of water bodies during clean up and disposal. Advise local water authority that none of the affected water should be used for irrigation or for the abstraction of potable water until natural dilution returns the boron value to its normal environmental background level or meets local water quality standards.

Methods and materials for containment and cleaning up

Small spill: Move containers from spill area. Vacuum or sweep up material and place in a designated, labeled waste container. Dispose of via a licensed waste disposal contractor.

Large spill: Move containers from spill area. Approach release from upwind. Prevent entry into sewers, water courses, basements or confined areas. Vacuum or sweep up material and place in a designated, labeled waste container. Dispose of via a licensed waste disposal contractor. Note: see Section 1 for emergency contact information and Section 13 for waste disposal.

Section 7. Handling and storage

Precautions for safe handling

Protective measures: Good housekeeping procedures should be followed to minimise dust generation and accumulation. Avoid spills.

Advice on general occupational hygiene: Eating, drinking and smoking should be prohibited in areas where this material is handled, stored and processed. Workers should wash hands and face before eating, drinking and smoking. Remove contaminated clothing and protective equipment before entering eating areas. See also Section 8 for additional information on hygiene measures.

Conditions for safe storage, including any incompatibilities: No special handling precautions are required, but dry, indoor storage is recommended. To maintain package integrity and to minimise caking of the product, bags should be handled on a first-in first-out basis.

Storage temperature: Ambient temperature
Storage pressure: Ambient pressure
Special sensitivity: Moisture (Caking)

Section 8. Exposure controls/personal protection

Control parameters

Occupational exposure limits: None.

Recommended monitoring procedures: In the absence of a national OEL, Rio Tinto Borates recommends and applies internally an Occupational Exposure Limit (OEL) of 1 mg B/m3. To convert this product to equivalent zinc (Zn), multiply by 0.301. To convert to equivalent boron (B), multiply by 0.149.

Appropriate engineering controls: If user operations generate dust, fumes, gas, vapor or mist, use process enclosures, local exhaust ventilation or other engineering controls to keep worker exposure to airborne contaminants below any recommended or statutory limits.

Environmental exposure controls: Limiting releases from site: Where appropriate, material should be recovered and recycled through the process. Spillages of powder or granulated borates should be swept or vacuumed up immediately and placed in containers for disposal in order to prevent unintentional release to the environment. Waste containing borates should be handled as an hazardous waste and removed by licensed operator to an offsite location where it can be incinerated or disposed to a hazardous landfill.

Water Emissions: Storage should be sheltered from precipitation. Avoid spillage into water and cover drains. Removal from water can only be accomplished by very
Section 8. Exposure controls/personal protection

Specific treatment technologies including ion exchange resins, reverse osmosis etc. Removal efficiency is dependent upon a number of factors and will vary from 40 to 90%. Much of the technology is currently not appropriate to high volume or mixed waste streams. Boron is not removed in considerable amounts in conventional STP. If sites discharge to a municipal STP the concentration of boron should not exceed the PNEC in the municipal STP.

Air Emissions: Emissions to air can be removed by one or more of the following dust-control measures: electrostatic precipitators, cyclones, fabric or bag filters, membrane filters, ceramic and metal mesh filters, and wet scrubbers.

Individual protection measures

Hygiene measures

- Wash hands, forearms and face thoroughly after handling chemical products, before eating, smoking and using the lavatory and at the end of the working period.
- Appropriate techniques should be used to remove potentially contaminated clothing.
- Wash contaminated clothing before reusing. Ensure that eyewash stations and safety showers are close to the workstation location.

Eye/face protection

- Safety eyewear complying with an approved standard should be used when a risk assessment indicates this is necessary to avoid exposure to liquid splashes, mists, gases or dusts. If contact is possible, the following protection should be worn, unless the assessment indicates a higher degree of protection: safety glasses with side-shields.

Skin protection

Hand protection

- Standard work gloves (cotton, canvas or leather) may be warranted if environment is excessively dusty.

Body protection

- No special protective clothing is required.

Other skin protection

- Appropriate footwear and any additional skin protection measures should be selected based on the task being performed and the risks involved and should be approved by a specialist before handling this product.

Respiratory protection

- Based on the hazard and potential for exposure, select a respirator that meets the appropriate standard or certification. Respirators must be used according to a respiratory protection program to ensure proper fitting, training, and other important aspects of use.

Section 9. Physical and chemical properties and safety characteristics

Appearance

- **Physical state**: Solid. [Crystalline solid.]
- **Color**: White.
- **Odor**: Odorless.
- **Odor threshold**: Not available.
- **pH**: 6.8 to 7.5 (Aqueous solution)
- **Melting point/freezing point**: >300°C (>572°F)
- **Boiling point**: Not applicable.
- **Flash point**: Not applicable.
- **Burning time**: Not applicable.
- **Burning rate**: Not applicable.
- **Evaporation rate**: Not applicable.
- **Flammability**: The product is not flammable, combustible or explosive.
- **Lower and upper explosion limit/flammability limit**: Not available.
- **Vapor pressure**: Not applicable.
- **Relative vapor density**: Not available.
- **Bulk density**: Not available.
Section 9. Physical and chemical properties and safety characteristics

Granulometry : Not available.
Relative density : 2.6
Solubility : Not available.
Solubility in water : <0.28% at 25°C
Partition coefficient: n-octanol/water : Not available.
Auto-ignition temperature : Not applicable.
Decomposition temperature : Not applicable.
SADT : Not available.
Viscosity : Dynamic (room temperature): Not applicable. Kinematic (room temperature): Not applicable.
Flow time (ISO 2431) : Not available.

Section 10. Stability and reactivity

Reactivity : No specific test data related to reactivity available for this product or its ingredients.
Chemical stability : Under normal ambient temperatures (-40°C to +40°C), the product is stable.
Possibility of hazardous reactions : Reaction with strong reducing agents such as metal hydrides or alkali metals will generate hydrogen gas which could create an explosive hazard.
Conditions to avoid : Avoid contact with strong reducing agents by storing according to good industrial practice.
Incompatible materials : Strong reducing agents
Hazardous decomposition products : Under normal conditions of storage and use, hazardous decomposition products should not be produced.

Section 11. Toxicological information

Information on toxicological effects

Acute toxicity

<table>
<thead>
<tr>
<th>Product/ingredient name</th>
<th>Result</th>
<th>Species</th>
<th>Dose</th>
<th>Exposure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hexaboron dizinc undecaoxide, hydrate</td>
<td>LC50 Inhalation Vapor</td>
<td>Rat</td>
<td>>5 mg/l</td>
<td>4 hours</td>
</tr>
<tr>
<td></td>
<td>LD50 Dermal</td>
<td>Rabbit</td>
<td>>10000 mg/kg</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>LD50 Oral</td>
<td>Rat</td>
<td>>10000 mg/kg Body weight:</td>
<td>-</td>
</tr>
</tbody>
</table>

Conclusion/Summary

Based on the available data, the classification criteria are not met.

Irritation/Corrosion

<table>
<thead>
<tr>
<th>Product/ingredient name</th>
<th>Result</th>
<th>Species</th>
<th>Score</th>
<th>Exposure</th>
<th>Observation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hexaboron dizinc undecaoxide, hydrate</td>
<td>Skin - No irritation.</td>
<td>Rabbit</td>
<td>-</td>
<td>500 mg</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Eyes - No irritation.</td>
<td>Rabbit</td>
<td><1</td>
<td>100 mg</td>
<td>-</td>
</tr>
</tbody>
</table>

Conclusion/Summary

Skin : Non-irritant to skin. Based on the available data, the classification criteria are not met.
Eyes : Based on mean scores less than 1, the effects were fully reversible within 7 days. Based on the available data, the classification criteria are not met.

Date of issue/Date of revision : 2019/05/14
Version : 1
Section 11. Toxicological information

Sensitization

<table>
<thead>
<tr>
<th>Product/ingredient name</th>
<th>Route of exposure</th>
<th>Species</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hexaboron dizinc undecaoxide, hydrate</td>
<td>skin</td>
<td>Guinea pig</td>
<td>Not sensitizing</td>
</tr>
</tbody>
</table>

Conclusion/Summary

Skin
- Not a skin sensitizer. Based on the available data, the classification criteria are not met.

Respiratory
- No respiratory sensitization studies have been conducted. There are no data to suggest that borates are respiratory sensitisers. Based on the available data, the classification criteria are not met.

Mutagenicity

<table>
<thead>
<tr>
<th>Product/ingredient name</th>
<th>Test</th>
<th>Experiment</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hexaboron dizinc undecaoxide, hydrate</td>
<td>OECD 476</td>
<td>Experiment: In vitro Subject: Mammalian-Animal Cell: Germ</td>
<td>Negative</td>
</tr>
</tbody>
</table>

Conclusion/Summary
- Not mutagenic. Based on the available data, the classification criteria are not met.

Carcinogenicity

Conclusion/Summary
- Zinc borate disassociates to zinc hydroxide and boric acid in the low pH environment of the stomach. No carcinogenic effects observed in chronic carcinogenicity studies of boric acid conducted in rats and mice, and no evidence of carcinogenic effects in zinc borate breakdown products. Based on the available data, the classification criteria are not met.

Reproductive toxicity

<table>
<thead>
<tr>
<th>Product/ingredient name</th>
<th>Maternal toxicity</th>
<th>Fertility effects</th>
<th>Developmental effects</th>
<th>Species</th>
<th>Effects</th>
<th>Exposure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hexaboron dizinc undecaoxide, hydrate</td>
<td>Positive</td>
<td>Positive</td>
<td>-</td>
<td>Rat</td>
<td>NOAEL in rats for effects on fertility in males is 100 mg zinc borate (hydrate)/kg/bw. NOAEL in rats for developmental effects on the foetus including foetal weight loss and minor skeletal variations is < 100 mg zinc borate hydrate/kg bw.</td>
<td>Oral feeding study</td>
</tr>
<tr>
<td></td>
<td>Positive</td>
<td>-</td>
<td>Positive</td>
<td>Rat</td>
<td>No adverse fertility effects in male workers. Epidemiological studies of human developmental effects have shown an absence of effects in exposed borate workers and populations living in areas with high environmental levels of boron. Epidemiological studies of human developmental effects have shown</td>
<td>Oral feeding study</td>
</tr>
<tr>
<td></td>
<td>Negative</td>
<td>Negative</td>
<td>Negative</td>
<td>Human</td>
<td></td>
<td>Combined oral ingestion and inhalation.</td>
</tr>
</tbody>
</table>

Date of issue/Date of revision: 2019/05/14
Version: 1
Section 11. Toxicological information

| Conclusion/Summary | Developmental effects have been observed in laboratory animals, the most sensitive species being the rat (NOAEL 9.6 mg B/kg bw/day). While boron has been shown to adversely affect male reproduction in laboratory animals, there was no clear evidence of male reproductive effects attributable to boron in studies of highly exposed workers. However, the low toxicity of zinc borate (acute oral LD50 is > 10,000 mg/kg) compared to other borates indicates that the bioavailability of boron from zinc borate may be low.

Teratogenicity

| Conclusion/Summary | See Reproductive toxicity.

Specific target organ toxicity (single exposure)

Not available.

Specific target organ toxicity (repeated exposure)

Not available.

Aspiration hazard

Not applicable.

Information on the likely routes of exposure

Inhalation is the most significant route of exposure in occupational and other settings. Dermal exposure is not usually a concern because product is poorly absorbed through intact skin. **Product is not intended for ingestion.**

Potential acute health effects

Eye contact

- No known significant effects or critical hazards.

Inhalation

- No known significant effects or critical hazards.

Skin contact

- Symptoms of accidental over-exposure to high doses of inorganic borate salts have been associated with ingestion or absorption through large areas of severely damaged skin. These may include nausea, vomiting, and diarrhoea, with delayed effects of skin redness and peeling.

Ingestion

- This product is not intended for ingestion. Small amounts (e.g., a teaspoon) swallowed accidentally are not likely to cause effects; swallowing amounts larger than that may cause gastrointestinal symptoms. Symptoms of accidental over-exposure to high doses of inorganic borate salts have been associated with ingestion or absorption through large areas of severely damaged skin. These may include nausea, vomiting, and diarrhoea, with delayed effects of skin redness and peeling.

Symptoms related to the physical, chemical and toxicological characteristics

Eye contact

- No specific data.

Inhalation

- Adverse symptoms may include the following:
 - reduced fetal weight
 - increase in fetal deaths
 - skeletal malformations

Skin contact

- Symptoms of accidental over-exposure to high doses of inorganic borate salts have been associated with ingestion or absorption through large areas of severely damaged skin. These may include nausea, vomiting, and diarrhoea, with delayed effects of skin redness and peeling.

Ingestion

- Symptoms of accidental over-exposure to high doses of inorganic borate salts have been associated with ingestion or absorption through large areas of severely damaged skin. These may include nausea, vomiting, and diarrhoea, with delayed effects of skin redness and peeling.
Section 11. Toxicological information

Delayed and immediate effects and also chronic effects from short and long term exposure

Short term exposure

Potential immediate effects: Not available.

Potential delayed effects: Not available.

Long term exposure

Potential immediate effects: Not available.

Potential delayed effects: Human epidemiological studies show no increase in pulmonary disease in occupational populations with chronic exposures to boric acid and sodium borate dust. Human epidemiological studies indicate no effect on fertility in occupational populations with chronic exposures to borate dust and indicate no effect to a general population with high exposures to borates in the environment.

Numerical measures of toxicity

Acute toxicity estimates

Not available.

Section 12. Ecological information

Toxicity

<table>
<thead>
<tr>
<th>Product/ingredient name</th>
<th>Test</th>
<th>Result</th>
<th>Species</th>
<th>Exposure</th>
</tr>
</thead>
<tbody>
<tr>
<td>boron</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Algae</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Invertebrate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fish</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fish.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Invertebrate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Algae</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Invertebrate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fish.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fish.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOEC 17.5 mg/l (as Boron)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EC50 0.147 mg/l (as Zn)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC50 0.169 mg/l (as Zn)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC50 0.136 mg/l (as Zn)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOEC 0.037 mg/l (as Zn)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOEC 0.044 mg/l (as Zn)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOEC 0.019 mg/l (as Zn)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>brine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Algae</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Invertebrate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fish.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fish.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOEC 17.5 mg/l (as Boron)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EC50 0.147 mg/l (as Zn)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC50 0.169 mg/l (as Zn)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC50 0.136 mg/l (as Zn)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOEC 0.037 mg/l (as Zn)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOEC 0.044 mg/l (as Zn)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOEC 0.019 mg/l (as Zn)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Conclusion/Summary: Note that the data values are expressed as zinc ion or boron equivalents. To convert to this product, divide the zinc equivalent by 0.301 and divide the boron equivalent by 0.149. Studies judged to be unreliable or with insufficient information to evaluate are not included.

A study of the transformation/dissolution characteristics of zinc borate was conducted following the OECD 29 protocol. The amount of zinc ion in solution after 24 hr exceeded the acute reference values, so zinc borate is classified as Aquatic Acute 1 (H400: Very toxic to aquatic life). The amount of zinc in solution after 28
Section 12. Ecological information

Zinc borate will hydrolyze under environmental conditions to boric acid and zinc hydroxide. Adsorption of boric acid to soils or sediments is minimal. Adsorption of zinc ions is described by partition coefficients and may vary with site-specific conditions. For boric acid, the solids-water partitioning coefficients are 2.19 L/kg (soil) and 2.8 L/kg (sediment). For zinc, the solids-water partitioning coefficients are 159 L/kg (soil), 73,000 L/kg (freshwater/sediment), and 6010 L/kg (seawater/sediment).

Boron is an essential micronutrient for healthy growth of plants; however, it can be harmful to boron sensitive plants in high quantities. Care should be taken to minimize the amount of this product released to the environment.

Persistence and degradability

Conclusion/Summary : Not applicable. Inorganic substance

Bioaccumulative potential
Not available.

Mobility in soil

Soil/water partition coefficient (K_{OC}) : Not available.

Mobility : Zinc borate will hydrolyze under environmental conditions to boric acid and zinc hydroxide. Adsorption of boric acid to soils or sediments is minimal. Adsorption of zinc ions is described by partition coefficients and may vary with site-specific conditions. For boric acid, the solids-water partitioning coefficients are 2.19 L/kg (soil) and 2.8 L/kg (sediment). For zinc, the solids-water partitioning coefficients are 159 L/kg (soil), 73,000 L/kg (freshwater/sediment), and 6010 L/kg (seawater/sediment).

Other adverse effects : No known significant effects or critical hazards.

Section 13. Disposal considerations

Disposal methods : The generation of waste should be avoided or minimized wherever possible. Dispose of surplus and non-recyclable products via a licensed waste disposal contractor. Disposal of this product, solutions and any by-products should at all times comply with the requirements of environmental protection and waste disposal legislation and any regional local authority requirements. Waste packaging should be recycled. This material and its container must be disposed of in a safe way. Care should be taken when handling emptied containers that have not been cleaned or rinsed out. Empty containers or liners may retain some product residues. Avoid dispersal of spilled material and runoff and contact with soil, waterways, drains and sewers.

Section 14. Transport information

<table>
<thead>
<tr>
<th>UN number</th>
<th>UN proper shipping name</th>
<th>Transport hazard class(es)</th>
<th>Packing group</th>
</tr>
</thead>
<tbody>
<tr>
<td>UN3077</td>
<td>ENVIRONMENTALLY HAZARDOUS SUBSTANCE, SOLID, N.O.S. (Hexaboron dizinc undecaoxide, hydrate)</td>
<td>9</td>
<td>III</td>
</tr>
</tbody>
</table>

Date of issue/Date of revision : 2019/05/14
Version : 1
Section 14. Transport information

<table>
<thead>
<tr>
<th>Environmental hazards</th>
<th>Yes.</th>
<th>Yes.</th>
<th>Yes.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Additional information</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UN</td>
<td>This product is not regulated as a dangerous good when transported in sizes of ≤5 L or ≤5 kg, provided the packagings meet the general provisions of 4.1.1.1, 4.1.1.2 and 4.1.1.4 to 4.1.1.8.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMDG</td>
<td>This product is not regulated as a dangerous good when transported in sizes of ≤5 L or ≤5 kg, provided the packagings meet the general provisions of 4.1.1.1, 4.1.1.2 and 4.1.1.4 to 4.1.1.8.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IATA</td>
<td>This product is not regulated as a dangerous good when transported in sizes of ≤5 L or ≤5 kg, provided the packagings meet the general provisions of 5.0.2.4.1, 5.0.2.6.1.1 and 5.0.2.8.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Special precautions for user: Not applicable.

Transport in bulk according to Annex II of MARPOL and the IBC Code: Not applicable.

Section 15. Regulatory information

Safety, health and environmental regulations specific for the product: No known specific national and/or regional regulations applicable to this product (including its ingredients).

International regulations
- **Chemical Weapon Convention List Schedules I, II & III Chemicals** Not listed.
- **Stockholm Convention on Persistent Organic Pollutants** Not listed.
- **UNECE Aarhus Protocol on POPs and Heavy Metals** Not listed.

Inventory list
- **Australia inventory (AICS)**: All components are listed or exempted.
- **Canada inventory**: All components are listed or exempted.
- **China inventory (IECSC)**: All components are listed or exempted.
- **Europe inventory**: All components are listed or exempted.
- **Japan inventory**
 - **Japan inventory (ENCS)**: All components are listed or exempted.
 - **Japan inventory (ISHL)**: Not determined.
- **Korea inventory**: All components are listed or exempted.
- **Malaysia Inventory (EHS Register)**: Not determined.
- **New Zealand Inventory of Chemicals (NZIoC)**: All components are listed or exempted.
- **Philippines inventory (PICCS)**: Not determined.
- **Taiwan Chemical Substances Inventory (TCSI)**: All components are listed or exempted.

Date of issue/Date of revision: 2019/05/14

Version: 1 11/12
Section 15. Regulatory information

Thailand : Not determined.
Turkey inventory : Not determined.
United States inventory (TSCA 8b) : All components are listed or exempted.
Viet Nam : Not determined.

Section 16. Other information

History
- Date of issue/Date of revision : 2019/05/14
- Date of previous issue : 2015/01/20
- Version : 1
- Key to abbreviations:
 - ATE = Acute Toxicity Estimate
 - BCF = Bioconcentration Factor
 - GHS = Globally Harmonized System of Classification and Labelling of Chemicals
 - IATA = International Air Transport Association
 - IBC = Intermediate Bulk Container
 - IMDG = International Maritime Dangerous Goods
 - IMSBC = International Maritime Solid Bulk Cargoes Code
 - LogPow = logarithm of the octanol/water partition coefficient
 - UN = United Nations

Procedure used to derive the classification

<table>
<thead>
<tr>
<th>Classification</th>
<th>Justification</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOXIC TO REPRODUCTION (Unborn child) - Category 2</td>
<td>Expert judgment</td>
</tr>
<tr>
<td>AQUATIC HAZARD (ACUTE) - Category 1</td>
<td>Expert judgment</td>
</tr>
<tr>
<td>AQUATIC HAZARD (LONG-TERM) - Category 2</td>
<td>Expert judgment</td>
</tr>
</tbody>
</table>

References

Notice to reader
To the best of our knowledge, the information contained herein is accurate. However, neither the above-named supplier, nor any of its subsidiaries, assumes any liability whatsoever for the accuracy or completeness of the information contained herein.
Final determination of suitability of any material is the sole responsibility of the user. All materials may present unknown hazards and should be used with caution. Although certain hazards are described herein, we cannot guarantee that these are the only hazards that exist.